内容简介
本书内容涉及摄影学、计算机视觉、深度学习3个领域,系统地介绍了计算机视觉在图像质量和摄影学各个领域的核心算法和应用,包括传统的图像处理算法和深度学习核心算法。本书理论知识体系完备,同时提供大量实例,供读者实战演练。本书融合摄影学和计算机视觉的内容,覆盖面非常广。第1章简单介绍摄影的历史、摄影与图像的基本概念和摄影中的许多基本技巧。从第2章开始,本书对摄影学中图像处理算法的各个重要方向进行介绍,包括使用计算机视觉技术对摄影作品进行定量的质量评估、后期自动构图、噪声的去除、对比度增强和色调增强、人脸美颜与美妆、图像的去模糊和分辨率提升、艺术风格滤镜、景深的估计和编辑、图像的融合等,涵盖当前摄影后期软件的主要功能,并全部是基于算法进行自动实现的。本书适合计算机视觉行业从业者、摄影专业人士和爱好者、对当下智能摄影后期核心技术感兴趣并且想要有所提高的学生、工程技术人员或相关专业教师阅读。
AI简介
这是一本系统介绍计算机视觉在图像质量和摄影学各个领域的核心算法和应用的著作。该书理论知识体系完备,同时提供大量实例,供读者实战演练。本书融合摄影学和计算机视觉的内容,覆盖面非常广。
首先,该书第1章简单介绍摄影的历史、摄影与图像的基本概念和摄影中的许多基本技巧。从第2章开始,本书对摄影学中图像处理算法的各个重要方向进行介绍,包括使用计算机视觉技术对摄影作品进行定量的质量评估、后期自动构图、噪声的去除、对比度增强和色调增强、人脸美颜与美妆、图像的去模糊和分辨率提升、艺术风格滤镜、景深的估计和编辑、图像的融合等,涵盖当前摄影后期软件的主要功能,并全部是基于算法进行自动实现的。
本书特别强调深度学习技术在图像处理中的应用,特别是在图像美学质量评估、图像超分、人脸美颜与美妆、图像去模糊与超分、图像滤镜与风格化等章节中,详细介绍了深度学习模型和方法,并通过大量实例展示了这些模型和方法的实际应用效果。
在图像美学质量评估方面,本书详细介绍了传统美学质量评估方法和深度学习美学质量评估方法,包括基于深度学习的方法、传统美学质量评估方法等。这些方法可以自动学习到与美学相关的特征,从而实现对图像美学