机器学习实践指南:案例应用解析

机器学习实践指南:案例应用解析

评分

★★★★★

ISBN

9787111462071

出版社

机械工业出版社 2014-04-01出版

作者

麦好

分类

人工智能

内容简介
《机器学习实践指南:案例应用解析》是机器学习及数据分析领域不可多得的一本著作,也是为数不多的既有大量实践应用案例又包含算法理论剖析的著作,作者针对机器学习算法既抽象复杂又涉及多门数学学科的特点,力求理论联系实际,始终以算法应用为主线,由浅入深以全新的角度诠释机器学习。全书分为准备篇、基础篇、统计分析实战篇和机器学习实战篇。准备篇介绍了机器学习的发展及应用前景以及常用科学计算平台,主要包括统计分析语言r、机器学习模块mlpy和neurolab、科学计算平台numpy、图像识别软件包opencv、网页分析beautifulsoup等软件的安装与配置。基础篇先对数学基础及其在机器学习领域的应用进行讲述,同时推荐配套学习的数学书籍,然后运用实例说明计算平台的使用,以python和r为实现语言,重点讲解了图像算法、信息隐藏、最小二乘法拟合、因子频率分析、欧氏距离等,告诉读者如何使用计算平台完成工程应用。最后,通过大量统计分析和机器学习案例提供实践指南,首先讲解回归分析、区间分布、数据图形化、分布趋势、正态分布、分布拟合等数据分析基础,然后讲解神经网络、统计算法、欧氏距离、余弦相似度、线性与非线性
AI简介
这是一本以机器学习算法为核心,结合数学基础、科学计算平台以及案例分析的综合性教材。全书分为准备篇、基础篇、统计分析实战篇和机器学习实战篇。准备篇介绍了机器学习的发展及应用前景以及常用科学计算平台,主要包括统计分析语言R、机器学习模块mlpy和neurolab、科学计算平台numpy、图像识别软件包opencv、网页分析beautifulsoup等软件的安装与配置。基础篇先对数学基础及其在机器学习领域的应用进行讲述,同时推荐配套学习的数学书籍,然后运用实例说明计算平台的使用,以python和r为实现语言,重点讲解了图像算法、信息隐藏、最小二乘法拟合、因子频率分析、欧氏距离等,告诉读者如何使用计算平台完成工程应用。最后,通过大量统计分析和机器学习案例提供实践指南,首先讲解回归分析、区间分布、数据图形化、分布趋势、正态分布、分布拟合等数据分析基础,然后讲解神经网络、统计算法、欧氏距离、余弦相似度、线性与非线性回归、数据拟合、线性滤波、图像识别、人脸辨识、网页分类等机器学习算法。 本书以机器学习算法为核心,详细阐述了神经网络、支持向量机(SVM)、回归算法等经典算法的基本原理和应用场景。书中
阅读/下载地址