内容简介
Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. This Learning Path will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms.The Learning Path starts with an introduction to RL followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy itera
AI简介
这是一本深度解析强化学习算法,并通过Python语言实现的经典教材。该书从理解强化学习的基本概念出发,逐步深入到马尔可夫决策过程和动态规划,为读者打下坚实的理论基础。同时,书中还详细介绍了OpenAI Universe和TensorFlow,为读者提供了强大的实践工具。
书中深入探讨了强化学习在游戏领域的应用,例如,如何通过强化学习训练游戏角色,使其能够根据环境变化做出更灵活、更智能的决策。同时,书中也介绍了强化学习在自动驾驶领域的应用,例如,如何通过强化学习训练自动驾驶汽车,使其能够根据环境变化做出最优的驾驶决策。
此外,书中还详细介绍了多臂老虎机问题和A3C网络结构,以及信任区域策略优化和DDPG算法原理,为读者提供了深入的理论和实践指导。