大语言模型:基础与前沿
评分5.9分
本书深入阐述了大语言模型的基本概念和算法、研究前沿以及应用,涵盖大语言模型的广泛主题,从基础到前沿,从方法到应用,涉及从方法论到应用场景方方面面的内容。首先,本书介绍了人工智能领域的进展和趋势;其次,探讨了语言模型的基本概念和架构、Transformer、预训练目标和解码策略、上下文学习和轻量级微调、稀疏专家模型、检索增强型语言模型、对齐语言模型与人类偏好、减少偏见和有害性以及视觉语言模型等内容;最后,讨论了语言模型对环境的影响。 本书内容全面、系统性强,适合高年级本科生和研究生、博士后研究人员、讲师以及行业从业者阅读与参考。