联邦学习:算法详解与系统实现
评分10.0分
全书共分为三个部分,从概念、应用场景到具体的先进算法,再到最后的系统实现,对联邦学习技术进行全盘梳理与总结。第一部分为联邦学习基础知识,主要介绍和分享联邦学习的定义、挑战、应用场景和主要技术,包括联邦学习概述、应用场景和常用隐私保护技术。第二部分为联邦学习算法详述,主要介绍京东科技针对纵向联邦学习和横向联邦学习场景提出来的诸多创新性联邦学习算法,包括纵向联邦树模型算法、纵向联邦线性回归算法、纵向联邦核学习算法、异步纵向联邦学习算法、基于反向更新的双层异步纵向联邦学习算法、纵向联邦深度学习算法、快速安全的同态加密数据挖掘框架、横向联邦学习算法、混合联邦学习算法和联邦强化学习。第三部分为联邦学习系统,主要介绍京东科技设计的联邦学习系统及算法落地的性能优化技术,包括FedLearn联邦学习系统详述、gRPC在FedLearn中的联邦学习应用实例、落地场景中的性能优化实践和基于区块链的联邦学习。